Vision-based Long Document Information Retrieval

Forschungsthema/Bereich
Document Analysis, Information Retrieval, Artifical Intelligence, Computer Vision, Computer Science, Deep Learning, Large Language Model
Typ der Abschlussarbeit
Master
Startzeitpunkt
-
Bewerbungsschluss
31.05.2026
Dauer der Arbeit
-

Beschreibung

Long Document Information Retrieval (LDIR) refers to the task of finding relevant information within lengthy documents that contain rich visual and textual content. Unlike traditional IR on plain text, vision-based LDIR must handle the original look of documents – their layout and visual elements – to retrieve meaningful results. were absent or underrepresented in training.

In this thesis, we will research advanced retrieval techniques that integrate OCR-enhanced text extraction, multimodal embeddings, and hierarchical document retrieval. We aim to bridge the gap between textual and visual information by leveraging state-of-the-art models to understand and align content across different modalities for Long Document Information Retrieval.

What you do:
● Literature research on vision-based LDIR.
● Implementation of state-of-the-art methods for vision-based LDIR tasks.
● (Optional) Integrating multimodal retrieval methods to improve document understanding.

What we offer:
● Getting started quickly with our open-source code
● Compute resources for model training and deployment
● Experienced guidance and open discussions with other team members
● Support publishing your work at top conferences (also attending conferences in person)

Further Information:
We have further topics, such as Computer Vision, large language models (LLMs), Generative Models, Retrieval-Augmented Generation (RAG), Document Analysis and understanding, etc.

Please feel free to contact me (yufan.chen@kit.edu) with your CV and transcript of your records.

Voraussetzung

Voraussetzungen an Studierende
  • Interest in the topic of computer vision and doing task-oriented research
  • Python programming skills and knowledge of PyTorch/Tensorflow are desirable

Studiengangsbereiche
  • Ingenieurwissenschaften
    Elektrotechnik & Informationstechnik
    Geodäsie & Geoinformatik
    Informatik
    Mechatronik & Informationstechnik
    Sonstige Studienbereiche
    Remote Sensing and Geoinformatics
    Information System Engineering and Management


Betreuung

Titel, Vorname, Name
M.Sc., Yufan, Chen
Organisationseinheit
Computer Vision for Human-Computer Interaction Lab, Institute for Anthropomatics and Robotics (IAR)
E-Mail Adresse
yufan.chen@kit.edu
Link zur eigenen Homepage/Personenseite
Website

Bewerbung per E-Mail

Bewerbungsunterlagen
  • Lebenslauf
  • Notenauszug

E-Mail Adresse für die Bewerbung
Senden Sie die oben genannten Bewerbungsunterlagen bitte per Mail an yufan.chen@kit.edu


Zurück