Exploring Graph Embedding in Hyperbolic Space for NLP and Semantic Web Applications
- Forschungsthema/Bereich
- Graph Embedding; NLP; Semantic Web
- Typ der Abschlussarbeit
- Master
- Startzeitpunkt
- 15.06.2025
- Bewerbungsschluss
- 31.12.2025
- Dauer der Arbeit
- 6 Months
Beschreibung
With the development of Natural Language Processing technologies, semantic web technologies have become increasingly important in representing and organizing knowledge. These structured knowledge graphs are widely used in applications such as question answering, recommender systems, and semantic search. To help machines better understand these graphs, graph embeddings are used to map entities and relations into continuous vector spaces. This serves as a bridge between symbolic knowledge and neural models. Most existing embedding methods use Euclidean space, which works well for flat or homogeneous graphs. However, real-world graphs, especially in semantic domains like taxonomies, ontologies, and knowledge graphs, often have hierarchical or tree-like structures. These are difficult to represent properly in Euclidean space.This master’s thesis focuses on learning graph embedding in the Hyperbolic space. We will explore various hyperbolic graph embedding models and compare them with standard graph neural network methods like RGCN.Your tasks:
- Learn the semantic web fundamentals (RDF, OWL, ontology structures)
- Implement and test hyperbolic spatial graph embedding methods
- Analyze the differences with RGCN embedding methods
Voraussetzung
- Voraussetzungen an Studierende
-
- Interest in knowledge graphs, symbolic AI, or deep learning
- Good knowledge of at Natural Language Processing, Embedding Space, Graph Machine Learning, or Representation Learning
- Familiarity with frameworks such as PyTorch or TensorFlow
- Studiengangsbereiche
-
- Ingenieurwissenschaften
Elektrotechnik & Informationstechnik
Informatik
Mechatronik & Informationstechnik - Naturwissenschaften und Technik
Mathematik
- Ingenieurwissenschaften
Betreuung
- Titel, Vorname, Name
- M.Sc Nan Liu
- Organisationseinheit
- Institut für Automation und angewandte Informatik (IAI)
- E-Mail Adresse
- nan.liu@kit.edu
- Link zur eigenen Homepage/Personenseite
- Website
Bewerbung per E-Mail
- Bewerbungsunterlagen
-
- Lebenslauf
- Notenauszug
E-Mail Adresse für die Bewerbung
Senden Sie die oben genannten Bewerbungsunterlagen bitte per Mail an nan.liu@kit.edu
Zurück